
Neural Architecture Search : Part 2

Debadeepta Dey, Microsoft Research (dedey@microsoft.com)

Colin White, Abacus.AI (colin@abacus.ai)



Roadmap

¶The Power of Pareto-Frontiers

¶Weight-sharing Methods
¶ENAS

¶OFA

¶Recent Transformer-based Search Spaces

¶Petridish

¶Reproducibility, Fair Comparison, Best Practices

¶Open Problems



The Power of Pareto-Frontiers



The Power of Pareto-Frontier: Varying compute ability

4

IoT Edge Laptop Server



The Power of Pareto-Frontier: Dynamic device load

5



Pareto-frontiers are generalization 
of model compression!



Search Once, Deploy Everywhere! 

7Train models on the frontier!



Pareto-Frontier Search Methods

¶The vast majority of methods in current NAS literature do *NOT* 

output pareto -frontiers!

¶Combining multiple objectives via scalarization does *NOT* output 

pareto-frontiers!

¶Can we leverage single-objective search methods and turn them into 

pareto-frontier output methods?

Bag of Baselines for Multi-objective Joint Neural Architecture 

Search and Hyperparameter Optimization

Guerrero-Viu et al., AutoML Workshop at ICML 2021

https://arxiv.org/abs/2105.01015
https://arxiv.org/abs/2105.01015


Weight -sharing Methods



Efficient Neural Architecture Search 
via 
Parameter Sharing
Pham et al, ICML 2018

https://proceedings.mlr.press/v80/pham18a.html


ENAS



òThe main contribution of this work 

is to improve the efficiency of NAS 

by forcing all child models to share 

weights to eschew training each 

child model from scratch to 

convergence.ó

ENAS

¶Uses a single Nvidia 1080Ti GPU!
¶Search < 16 hours!

¶Compared to NAS via RL, 1000x reduction in search time!
Diagram credit: 

ENAS ICML 2018



Please attend NAS 2 for weight -sharing in -depth!



Once-for -All: Train One Network 
and Specialize it for Efficient 
Deployment
Cai et al., ICLR 2020

https://arxiv.org/abs/1908.09791


15Diagram credit: OFA ICLR 2020



Phase 1: Train supergraph

16

ÅWant to find weights such that every subgraph is competitive wrt the subgraph being independently trained!

Å Exponentially many subgraphs! 

Å Infeasible to enumerate and train each separately. L

Å Can randomly sample a few each step and update shared weights (remember ENAS!)

Å Updates interfere with each other leading to reduced performance L

Å Solution: Train the biggest and progressively shrink down!     

Diagram credit: OFA ICLR 2020



Phase 1: Train supergraph

17

Kernel Shrinking Depth Shrinking

Diagram credit: OFA ICLR 2020



Phase 1: Train supergraph

18

Width shrinking

ÅThroughout kernel, depth and width shrinking sample different input resolutions.

ÅImportant detail : Use distillation to guide training of smaller architectures!

ÅPhase 1 cost: 1200 GPU hours (~3 days with 16 GPUs)    

Diagram credit: OFA ICLR 2020



Phase 2: Train regressors

¶Sample 16k different architectures ðinput image sizes and measure 

accuracy on validation set to generate (architecture, accuracy) tuples.
¶Train small NN to predict accuracy given architecture as input.

¶Do same on each target platform to get (architecture, latency) 

tuples.
¶Train small NN to predict latency given architecture as input.

¶Phase 2 cost: ~40 GPU hours

19



Search

¶Simple! Use evolutionary search/RL/random search against the 

simulators (regressors from Phase 2)

¶Search cost: a few minutes on a laptop!

20

Diagram credit: OFA ICLR 2020



Recent Transformer-based Search Spaces



HAT: Hardware-Aware Transformers for Efficient 

Natural Language Processing

22
https://arxiv.org/abs/2005.14187

https://arxiv.org/abs/2005.14187


LiteTransformerSearch: Training-free On-device Search 

for Efficient Autoregressive Language Models

https://arxiv.org/pdf/2203.02094.pdf


