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The Power of Pareto-Frontiers



The Power of Pareto-Frontier: Varying compute ability
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The Power of Pareto-Frontier: Dynamic device load
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Pareto-frontiers are generalization
of model compression!



Search Once, Deploy Everywhere!
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Train models on the frontier!




Pareto-Frontier Search Methods

T The vast majority of methods in current NAS literature do *NOT*
output pareto -frontiers!

T Combining multiple objectives via scalarization does *NOT* output
pareto-frontiers!

T Can we leverage singleobjective search methods and turn them into
pareto-frontier output methods?

Bag of Baselines for Multkobjective Joint Neural Architecture

Search and Hyperparameter Optimization
Guerrero-Viu et al., AutoML Workshop at ICML 2021



https://arxiv.org/abs/2105.01015
https://arxiv.org/abs/2105.01015

Welight -sharing Methods



Efficient Neural Architecture Search

via
Parameter Sharing
Pham et al, ICML 2018



https://proceedings.mlr.press/v80/pham18a.html

ENAS



ENAS

OThe main contribution
IS to improve the efficiency of NAS

by forcing all child models to share

weights to eschew training each

child model from scratch to
convergence.o

TUses a single Nvidia 1080Ti GPU!

q Search < 16 hours!

_ _ T Compared to NAS via RL, 1000x reduction in search time!
Diagram credit:

ENAS ICML 2018



m Microsoft

Please attend NAS 2 for weight -sharing in-depth!

Efficient Neural Architecture Search
by Tejaswini Pedapati, Martin Wistuba

The growing interest in the automation of deep learning has led to the development of a wide variety of automated methods for Neural Architecture

Search. However, initial neural architecture algorithms were computationally intensive and took several GPU days. Training a candidate network is the
most expensive step of the search. Rather than training each candidate network from scratch, the next few algorithms proposed parameter sharing
amongst the candidate networks. But these parameter-sharing algorithms had their own drawbacks. In this tutorial, we would give an overview of
some of the one-shot algorithms, their drawbacks, and how to combat them. Later advancements accelerated the search by training fewer candidates
using technigues such as zero-shot, few-shot, and transfer learning. Just by using some characteristics of a randomly initialized neural network, some
search algorithms were able to find a well-performing model. Rather than searching from scratch, some methods leveraged transfer learning. In this
tutorial, we cover several of these flavors of algorithms that expedited the Neural Architecture Search.




Once-for-All: Train One Network

and Specialize it for Efficient
Deployment
Cal et al., ICLR 2020



https://arxiv.org/abs/1908.09791

train a once=-for-all network

| direct deploy | (no retrain)

Boiuca DMabnem w

Diagram credit: OFA ICLR 2020

B Previous: O(N) design cost
% B Ours: O(1) design cost
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Phase 1: Trainsupergraph

min Z ﬁfual (O(WﬂaaTCh’i))
© arch;

A Want to find weights such that every subgraph is competitive wrt the subgraph being independently trained!
A Exponentially many subgraphs!
A Infeasible to enumerate and train each separately.L
A Can randomly sample a few each step and update shared weights (remember ENAS!)
A Updates interfere with each other leading to reduced performance L
A Solution: Train the biggest and progressively shrink down!
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Diagram credit: OFA ICLR 2020 =



Phase 1: Trainsupergraph

Progressive Shrinking
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Phase 1: Trainsupergraph

=" channel
T —

’ sorting

train with full width

0.02

0.15
0.85

channel channel
importance importance

reorg.jé - sorting

0.63 }

’
’ |

progresswely shrlnk the W|dth

Width shrinking

channel reorg.

i Op

progresswely shrlnk the W|dth

A Throughout kernel, depth and width shrinking sample different input resolutions.
A Important detail : Use distillation to guide training of smaller architectures!
A Phase 1 cost: 1200 GPU hours (~3 days with 16 GPUSs)

Diagram credit: OFA I%LR 202



Phase 2: Train regressors

T Sample 16k different architectures o input image sizes and measure

accuracy on validation set to generate (architecture, accuracy) tuples.
T Train small NN to predict accuracy given architecture as input.

T Do same on each target platform to get (architecture, latency)

tuples.
T Train small NN to predict latency given architecture as input.

f Phase 2 cost: ~40 GPU hours
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Search

T Simple! Use evolutionary search/RL/random search against the
simulators (regressors from Phase 2)

T Search cost: a few minutes on a laptop!

% OFA O OFA - Train from scratch < EfficientNet
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Figure 9: OFA achieves 80.0% topl accuracy with 595M MACs and 80.1% topl accuracy with
143ms Pixell latency, setting a new SOTA ImageNet top1l accuracy on the mobile setting.

Diagram credit: OFA ICLR 2020



Recent Transformer-based Search Spaces



HAT: Hardware-Aware Transformers for Efficient
Natural Language Processin
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https://arxiv.orq/abs/2005.14187



https://arxiv.org/abs/2005.14187

Lite TransformerSearch: Training-free On-device Search
for Efficient Autoregressive Language Models

https://arxiv.org/pdf/2203.02094.pdf




