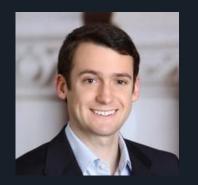
ABACUS.AI

Exploring the Loss Landscape in Neural Architecture Search

Colin White Abacus.Al Sam Nolen Abacus.Al Yash Savani Abacus.Al, Carnegie Mellon University

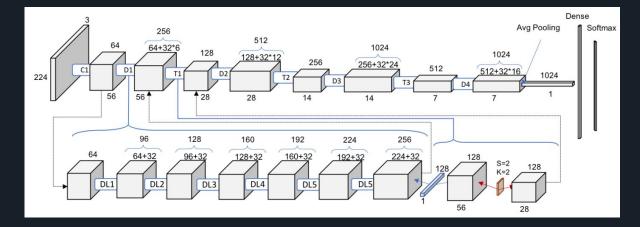




Slides (with hyperlinks): https://crwhite.ml

Neural architecture search

Architectures are getting increasingly more specialized and complex

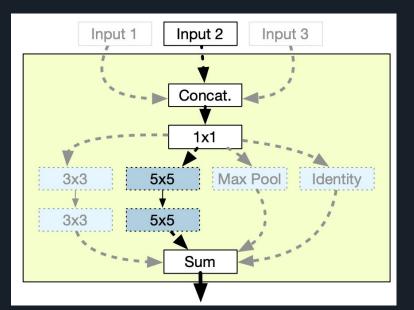


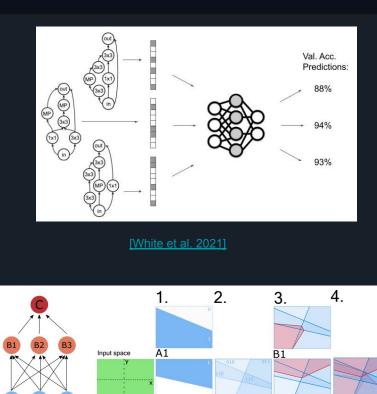


Source: https://towardsdatascience.com/understanding-and-visualizing-densenets-7f688092391a

NAS Algorithms

Algorithms are getting complex too





[Mellor et al. 2020]

A2

A3

B2

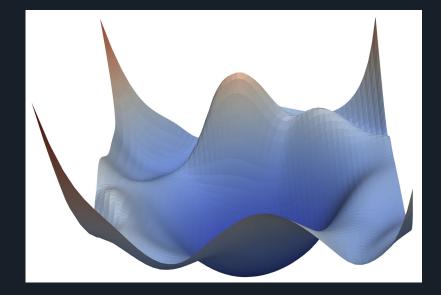
B3

A1

[Bender et al. 2018]

Noise in the loss landscape

NAS: given a set A, find $max_{a in A} f(a)$



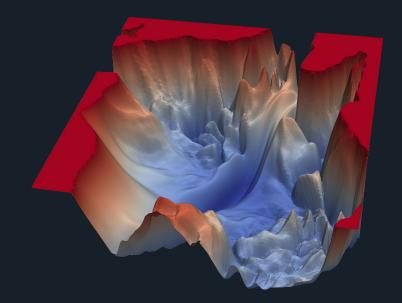
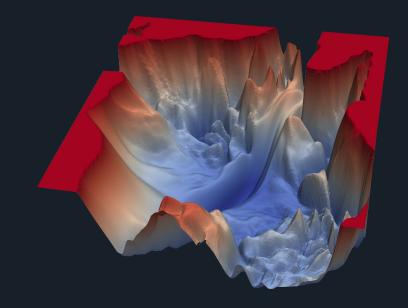


Image source: https://www.cs.umd.edu/~tomg/projects/landscapes/

Is NAS only hard because of noise?



Some recent NAS techniques have been designed specifically to deal with noisy architecture evaluations

Outline

Motivation

• Local Search

- Strong baseline for NAS
- SotA on de-noised search spaces

• Theoretical analysis

- Characterization of local search
- Characterization of number of local minima
- Simulation results

Local Search

Five lines of code

Algorithm 1 Local search

Input: Search space A, objective function ℓ , neighborhood function N

1. Pick an architecture $v_1 \in A$ uniformly at random

2. Evaluate $\ell(v_1)$; denote a dummy variable $\ell(v_0) = \infty$; set i = 1

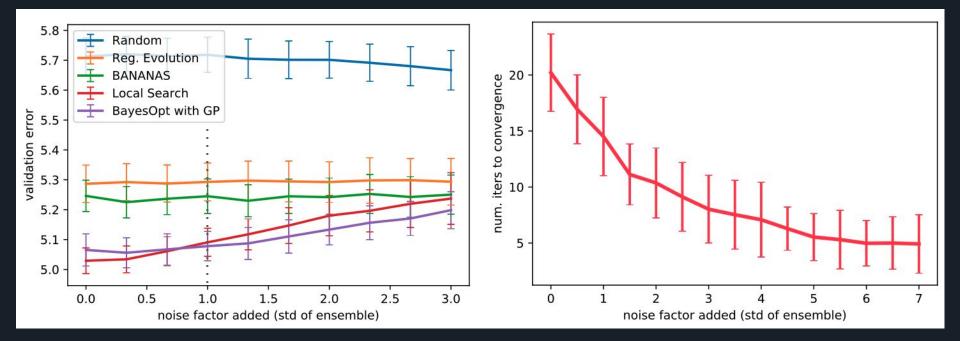
3. While
$$\ell(v_i) < \ell(v_{i-1})$$
:

i. Evaluate $\ell(u)$ for all $u \in N(v_i)$

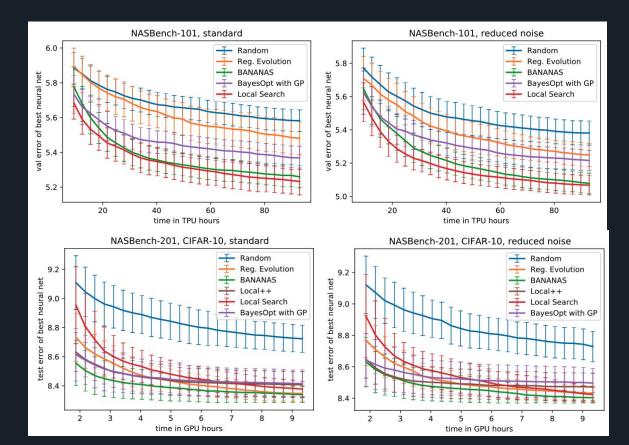
ii. Set
$$v_{i+1} = \operatorname{argmin}_{u \in N(v_i)} \ell(u)$$
; set $i = i + 1$
Dutput: Architecture v_i

Evaluate all architectures in the neighborhood

Performance vs. Noise on NAS-Bench-301



Performance vs. Noise on NASBench-101/201



NASBench-201: Computing #minima

Version	# iters	# local min.	% reached global min.
Denoised	5.36	21	47.4
Standard	4.97	55	6.71
Random	2.56	616	0.717

NAS-Bench-201 cifar10, 15,625 total architectures

Theoretical results

Given the distribution of accuracies and neighborhood graph

Theorem 5.1. Given $|A| = n, \ell, s, \epsilon, pdf_n$, and pdf_e , we have

$$\begin{split} \mathbb{E}[|\{v \in A \mid \mathtt{LS}^*(v) = v\}|] &= n \int_{\ell(v^*)}^{\infty} \mathrm{pdf}_n(x) \left(\int_x^{\infty} \mathrm{pdf}_e(x, y) dy\right)^s dx, \text{ and} \\ \mathbb{E}[|\{v \in A \mid \ell(\mathtt{LS}^*(v)) - \ell(v^*) \leq \epsilon\}|] &= n \int_{\ell(v^*)}^{\ell(v^*) + \epsilon} \mathrm{pdf}_n(x) \left(\int_x^{\infty} \mathrm{pdf}_e(x, y) dy\right)^s \mathbb{E}[|\mathtt{LS}^{-*}(x)|] dx. \end{split}$$

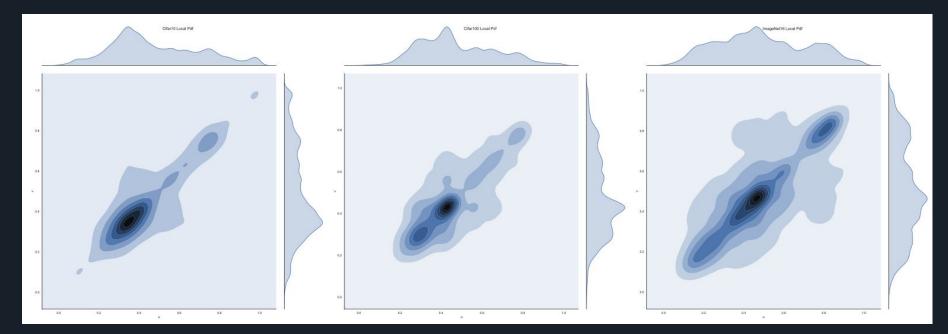
Lemma 5.2. Given A, ℓ , s, pdf_n , and pdf_e , then for all $v \in A$, we have the following equations.

$$\begin{split} \mathbb{E}[|LS^{-1}(v)|] &= s \int_{\ell(v)}^{\infty} pdf_e(\ell(v), y) \left(\int_{\ell(v)}^{\infty} pdf_e(y, z) dz \right)^{s-1} dy, \text{ and} \\ \mathbb{E}[|LS^{-k}(v)|] &= b_{k-1} \cdot \mathbb{E}[|LS^{-1}(v)|] \left(\frac{\int_{\ell(v)}^{\infty} pdf_e(\ell(v), y) \mathbb{E}[|LS^{-(k-1)}(y)|] dy}{\int_{\ell(v)}^{\infty} pdf_e(\ell(v), y) dy} \right) \end{split}$$

Example: For uniform dist, #local minima= |search space| /|neighbors|

15625/24 = 651.04

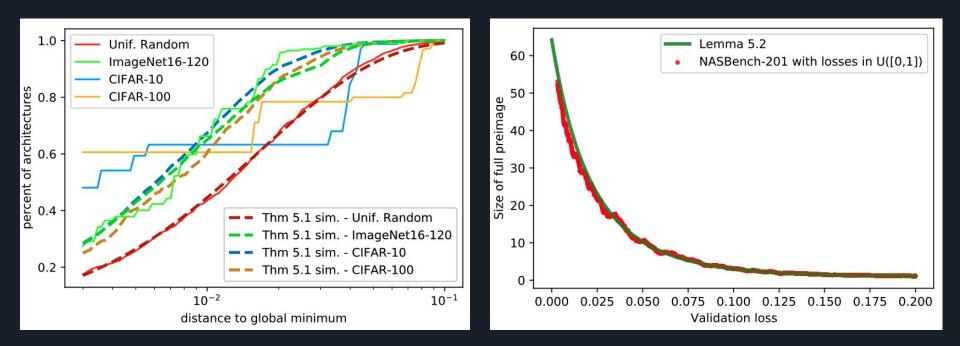
Neighborhood distributions



CIFAR-100

ImageNet16-120

Simulation Results



Conclusion

- Local search is a strong baseline for NAS
- Local search is SotA on de-noised search spaces
- Theoretical characterization of local search

https://github.com/naszilla/naszilla

Thanks!