Neural Architecture Search:
The Next Frontier

Colin White, Abacus.ai

Neural Architecture Search: The Next Frontier

colin@abacus.ai Slides (with hyperlinks): hitps://crwhite.ml/

https://crwhite.ml/

Machine learning automation

%F>§

Archai: Platform for Neural Architecture Search

N
Neural Network Intelligence

il ABACUS.AI

1950s 2013 2017 2022

' ity
a ! O

FEATURE
ENGINEERING

Neural architecture search

Architectures are getting increasingly more specialized and complex

https://arxiv.org/abs/1409.4842
https://towardsdatascience.com/understanding-and-visualizing-densenets-7f688092391a

Machine learning automation

%F>%

Archai: Platform for Neural Architecture Search

N
Neural Network Intelligence

i ABACUS.AI

1950s 2013 2017

FEATURE
ENGINEERING

Image Classification on ImageNet

Leaderboard Dataset

View Top 1 Accuracy v for All models

iT-G/14 CoCa (finetuned)

s —
NASNET-A(6): 82.700 i NoisyStudent

\/PNASNEE52
) =

Inception,V3
VGM

MSRA
4

Five Base + Five’HiRes

TOP 1 ACCURACY

AlexNet

2016 2017 2018 2019

Other models -e- State-of-the-art models

https://paperswithcode.com/sota/image-classification-on-imagenet

Neural architecture search

NAS: the process of
automating the design of
neural architectures for
a given dataset.

2015 2016 2017 2018 2019 2020 2021
Year

NAS: Basic Definition

e Define a search space A,

in Ly (w”(a),
min 1 (w*(a),a)

s.t. w*(a) = argmin,, Lipain (W, a)

NAS on new datasets / tasks

Sphencal Omnidirectional Vision Graph neural networks .
Generative adversarial network
NlnaPI'O DBS Prosthetics Control Dense prediction tasks

Adversarial robustness

FSDS0K audio ciassification Self-supervised learning for NAS

Darcy Flow poe soiver

PSICOV Protein Folding

Conv 3x3
Rate 6x3

Cosm |C Astronomy Imaging

Conv 3x3

Conv 3x3 Rate 18x15
Rate 6x3 |

ECG Medical Diagnostics I Conv 3x3

Conv 3x3 Conv 3x3 Conv 3x3 Rate 6x21
Rate 18x15 Rate 6x21 Rate 1x1

Sate"ite Earth Monitoring . Conv 3x3

Conv 3x3 Rate 1x1
Rate 1x6

DeepS EA Genetic Prediction Conv 3x3

Rate 1x6

https://nb360.ml.cmu.edu/
https://proceedings.neurips.cc/paper/2018/file/c90070e1f03e982448983975a0f52d57-Paper.pdf

Fitting Models on Edge Devices

Input | Operator | expsize | #out | SE |

224 x 3 conv2d - 16

1122 x 16 bneck, 3x3 16 16

1122 x 16 bneck, 3x3 64 24

562 x 24 bneck, 3x3 72 24

562 x 24 bneck, 5x5 72 40

28% x 40 bneck, 5x5 120 40

. 282 x 40 bneck, 5x5 120

Accuracy vs MAdds vs model size) | ekto |

- T 142 x 80 bneck, 3x3 200

E i 142 x 80 bneck, 3x3 184

142 x 80 bneck, 3x3 184

142 x 80 bneck, 3x3 480
142 x 112 bneck, 3x3
142 x 112 bneck, 5x5
72 x 160 bneck, 5x5
72 x 160 bneck, 5x5
7% x 160 conv2d, 1x1
72 x 960 pool, 7x7

12 x 960 | conv2d 1x1, NBN

12 x 1280 | conv2d 1x1, NBN

InceptionV2

MnasNet-A
i Input | Operator | expsize | #out | SE | NL |
MnaSNet sma“ 2242 x 3 conv2d, 3x3 - 16 - HS

MobileNetV?2 1122 x 16 bneck, 3x3 16 16
56° x 16 bneck, 3x3 72 24

MobileNetV3 282 x24 | bneck, 3x3 88 | 24
282 x 24 bneck, 5x5 96 40
N as N et 142 x 40 bneck, 5x5 240 40
142 x 40 bneck, 5x5 240 40

Proxy|essNAS 142 x 40 bneck, 5x5 120 48
142 x 48 bneck, 5x5 144 43

ResNet-50 142 x 48 bneck, 5x5 288 96
7 x 96 bneck, 5x5 576 96

Sh ufﬂeNetvz 72 x 96 bneck, 5x5 96
7% x 96 conv2d, 1x1 576
L 72 x 576 pool, 7x7 -
3000 12 x 576 | conv2d 1x1, NBN 1024
12 x 1024 | conv2d 1x1, NBN k

—
Q
o

=
iy
9]
e
()
o
@©

E
>
)
@©
—
>
1S4
o

<

N N N N NN

L S N N S S S SO B

https://arxiv.org/abs/1905.02244

Roadmap

e Motivation and Introduction

e Performance Prediction
o BANANAS
o Learning curve extrapolation
o Zero-cost proxies

e NAS Benchmarks
e Recommender Systems

Performance Predictors

Predict the (relative) accuracy of an architecture, without fully training it.

>

0

o
504
9]

o

@

200 300
epochs

Model-based Learning curve Zero-cost proxies
extrapolation

Model-Based Predictors

Train a surrogate model

e (Gaussian processes
Val. Acc.

Predictions:

 88% e Boosted trees ,
e GNNs

e Specialized encodings

High init time, low query time

https://arxiv.org/abs/1802.07191
https://arxiv.org/abs/1802.07191
https://arxiv.org/abs/1806.10282
https://arxiv.org/abs/2007.04785
https://arxiv.org/abs/2008.09777
https://arxiv.org/abs/1911.09336
https://arxiv.org/abs/1912.00848
https://arxiv.org/abs/1912.00848
https://arxiv.org/abs/1910.11858
https://arxiv.org/abs/1910.11858
https://arxiv.org/abs/2004.01899

“BO + Neural Predictor” Framework

Input Path Ensemble of Accuracy
Architectures Encodings feedforward Predictions .
networks and Uncertainty

Algorithm 1 BANANAS

Input: Search space A, dataset D, parameters
to, T, M, c, x, acquisition function ¢, function f(a)
returning validation error of a after training.

1. Draw t¢ architectures ay, . . . , a;, uniformly at random
from A and train them on D.

2. For t from ¢y to T,

i. Train an ensemble of meta neural networks on

{(ao,f(ao))a- (t,f(at))}-

Estimates

by randomly mutating the z architectures a from
{ao, . .., a:} that have the lowest value of f(a).

iii. For each candidate architecture a, evaluate the ac-
quisition function ¢(a).
iv. Denote a1 as the candidate architecture with min-
imum ¢(a), and evaluate f(a:+1):
Output: o* = argmin,_, _rf(az).

Train 10 arch.’s each iteration

https://arxiv.org/abs/1905.06159
https://arxiv.org/abs/1911.09336
https://arxiv.org/abs/1910.11858

“BO + Neural Predictor” Components

Algorithm 1 BANANAS

Input: Search space A, dataset D, parameters
to, T, M, c, z, acquisition function ¢, function f(a)
returning validation error of a after training.

1. Draw t architectures ay, . . . , a;, uniformly at random
from A and train them on D.

2. For t from tg to T,

i. Train an ensemble of meta neural networks on

{(a0a f(a'O))a Bty (ata f(at))}

ii. Generate a set of ¢ candidate architectures from A

by randomly mutating the x architectures a from
{ao, - . .,a;} that have the lowest value of f(a).

iii. For each candidate architecture a, evaluate the ac-
quisition function ¢(a).
iv. Denote a1 as the candidate architecture with min-
imum ¢(a), and evaluate f(as41).
Output: ¢* = argmin,_, ,f(a:).

Architecture encoding
Uncertainty calibration
Neural predictor
architecture

Acquisition optimization
strategy

Acquisition function

BANANAS =

Algorithm 1 BANANAS

Input: Search space A, dataset D, parameters
to, T, M, c, z, acquisition function ¢, function f(a)
returning validation error of a after training.
1. Draw t architectures ay, . . . , a;, uniformly at random
from A and train them on D.
2. For t from £y to T,

i. Train an ensemble of meta neural networks on

'{(ao,f(ao))a--- (at, f(ae))}-

ectures a from
{ao, - . .,a;} that have the lowest value of f(a).

iii. For each candidate architecture a, evaluate the ac-
quisition function ¢(a).

iv. Denote a;; as the candidate architecture with min-
imum ¢(a), and evaluate f(a¢41)-
Output: o* = argmin,_, rf(a:).

Input Path Ensemble of Accuracy

Architectures Encodings feedforward Predictions
networks and Uncertainty

Estimates

Path encoding, ensemble

Small mutations

Independent Thompson
Sampling

https://arxiv.org/abs/1910.11858

accuracy

Learning curve based predictors

o
0

©
IS

©
w

epochs

vapor pressure Ay = 0.10
pow; Ay = 0.07

log log linear Ay = 0.05
Hill; Ay = 0.02

log power Ay = 0.02
weighted comb. Ay = 0.001
pow, Ay =-0.01

MMF Ay = -0.02

exp, Ay =-0.04
Janoschek Ay = -0.04
Weibull Ay = -0.04

ilog, Ay =-0.05

data

e Learning curve extrapolation
o Fit partial learning curve to
parametric model

o Bayesian NN
e LCE + Surrogate
o SVR
o Full LC + Bayesian NN

No init time, high query time

https://ml.informatik.uni-freiburg.de/papers/15-IJCAI-Extrapolation_of_Learning_Curves.pdf
https://ml.informatik.uni-freiburg.de/papers/15-IJCAI-Extrapolation_of_Learning_Curves.pdf
http://ml.informatik.uni-freiburg.de/papers/17-ICLR-LCNet.pdf
https://arxiv.org/abs/1705.10823
http://ml.informatik.uni-freiburg.de/papers/17-ICLR-LCNet.pdf
http://ml.informatik.uni-freiburg.de/papers/17-ICLR-LCNet.pdf

LCE Framework

Algorithm 1 Single-Fidelity Algorithm Algorithm 2 LCE Framework

: initialize history I: initialize history
: whilet < tmax : 2: whilet < tmax :
arches = gen_candidates(history) 3: arches = gen_candidates(history)
: accs = train(arches, epoch=Fj,)
sorted_by_pred = LCE(arches, accs)

accs = train(arches, epoch=Fp.x) 4

history.update(arches, accs) 5
: Return arch with the highest acc 6: arches = sorted_by_pred[:top_n]
7: accs = train(arches, epoch=Fp.x)
8: history.update(arches, accs)
9: Return arch with the highest acc

NAS-Bench-111 CIFAR10 NAS-Bench-311 CIFAR10 NAS-Bench-NLP11 PTB

Valid. regret
Valid. regret

= BANANAS o8 w— BANANAS
= * BANANAS-SVR % * = = BANANAS-SVR . we BANANAS
= BOHB - " we= BOHB . - '.. « = » BANANAS-SVR

Perplexity regret

— HB e, — HB . e HB
— S) — S — LS

10° 105
Runtime (seconds) Runtime (seconds) Runtime (seconds)

https://arxiv.org/abs/2111.03602

Zero-cost proxies

epe-nas [21] Jacobian
fisher [42] Pruning-at-init
flops [25] Baseline
grad-norm [1] Prumng at-1mt
grasp [43]

12-norm [1]

jacov [23]

nwot [23]

params [25]

plain [1] Basehne
snip [14] Pruning-at-init
synflow [39] Pruning-at-init
zen-score [16] Piece. Lin.

Compute an estimate in 5 seconds

https://arxiv.org/abs/2006.04647

Zero-cost proxies

Table 4: Average ranking of each of the ZC proxies on each search space, and over all search spaces.

fisher grad_norm grasp jacob_cov snip synflow

NATS-Bench TSS 6.0 6.0 5.0 4.0 56T 1.33
DARTS 4.6 4.2 4.6 4.8 4.6 5.4

TransNAS-Bench-101 2.75 4.5 4.5 75 3.0 4.5
Overall 4.33 4.75 4.67 5.5 4.33 4.08

7 (13

Still do not consistently beat “flops”, “params”
No single ZC proxy performs well consistently
Promising when used in conjunction with other NAS techniques

params
4.0
3.8
5.25
4.33

https://iclr-blog-track.github.io/2022/03/25/zero-cost-proxies/

NAS-Bench-Suite-Zero (28 tasks)

Examples: Examples:
Jacob. Cow. NAS-Bench-101

EPE-NAS
Zen-Score

s 52

pooooon
Qoooooo
poooooo

1.5M total evaluations

Arch. Biases

Br fose

NAS Integration

=

https://openreview.net/forum?id=yWhuIjIjH8k
https://github.com/automl/NASLib/tree/zerocost

Complementary info in ZC proxies

NB301-CF10 NB201-CF100 TNB101_MACRO-autoencoder

—— random ordering —— random ordering —— random ordering
greedy ordering greedy ordering > greedy ordering
—— minimum k-tuple —— minimum k-tuple e —— minimum k-tuple

w

&)
@
=}

w

o
N
3}

r

NN

o o
N
o
n

-

(o)}
-
(o))

5
Conditional entropy

>
o
S
c
)
©
[=
ke,
&=
°
c
o
]

P
Conditional e

S O
o o
o
(&)

1 2 3 4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 12 13 6 7 8 9 10 11 12
Number of ZC proxies Number of ZC proxies Number of ZC proxies

Conditional entropy H (y | 2;,,--.,2:,) VS. k

https://openreview.net/forum?id=yWhuIjIjH8k

NAS integration

Val. Acc.
Predictions:

Features
Benchmark

Encoding

Both % Improvement (ZC)

% Improvement (Both)

NB101-CF10

NB201-CF10

NB201-CF100
NB201-IMGNT

NB301-CF10
TNB101_MACRO-AUTOENC
TNB101_MACRO-JIGSAW
TNB101_MACRO-NORMAL
TNB101_MACRO-OBJECT
TNB101_MACRO-ROOM
TNB101_MACRO-SCENE
TNB101_MACRO-SEGMENT
TNB101_MICRO-AUTOENC
TNB101_MICRO-JIGSAW
TNB101_MICRO-NORMAL
TNB101_MICRO-OBJECT
TNB101_MICRO-ROOM
TNB101_MICRO-SCENE
TNB101_MICRO-SEGMENT

0.546
0.622
0.640
0.683
0.314
0.673
0.809
0.617
0.736
0.683
0.832
0.900
0.714
0.585
0.657
0.637
0.582
0.710
0.767

0.718
0.906
0.908
0.883
0.465
0.837
0.809
0.716
0.843
0.707
0.899
0.876
0.803
0.743
0.809
0.752
0.844
0.866
0.897

29.67
45.50
41.71
28.70
28.98
23.48
-12.73
15.07
14.13
-13.76
7.09
-10.33
5.60
24.79
21.92
15.07
44.85
19.58
15.51

31.50
45.66
41.87
29.28
48.09

NB201 CF100

NB201 IMGNT

NB301 CF10

—— Encoding
zcps
—— Encoding + ZCPs

Accuracy (%)

Accuracy (%)

— Encoding
zcps.
— Encoding

+ ZCPs

Accuracy (%)

—— Encoding
ZCPs

—— Encoding + ZCPs

10°
Time (s)

Time (s)

10°

Time (s)

https://openreview.net/forum?id=yWhuIjIjH8k

Removing biases in ZC proxies

bias original original
dataset metric bias perf. strategy

minimize
NB201-CF10 conv:pool 0.87 0.42 equalize
performance
minimize
NB301-CF10 conv:pool 0.78 0.49 equalize
performance
- //////////001 064 minimize
NB201-CF100 cell size 0.57 0.68 equalize
performance
minimize
NB201-IM cell size 0.58 0.76 equalize
performance
minimize
NB301-CF10 num. skip : equalize
performance

Performance predictor families

>

9

o
504
9]

o

@

200 300
epochs

Model-based Learning curve Zero-cost proxies
extrapolation

Performance predictors

Kendall Tau on NAS-Bench-201 CIFAR-10

BANANAS SemiNAS
BOHAMIANN SoTL
BONAS SoTL-E
Bayes. Lin. Reg. Sparse GP

- DNGO Var. Sparse GP
Early Stop (Acc.) XGBoost

- Early Stop (Loss) Fisher
GCN Grad Norm
GP Grasp
lCE Jacob. Cov.
LCE-m LcSVR
LGBoost OneShot
MLP RSWS
NAO SNIP
NGBoost SynFlow

-=-= RF

=)

©
©
©
c
]
A%

>Proe <«pphh

https://arxiv.org/abs/2104.01177

OMNI: The Omnipotent Predictor

Combine best predictors from each family

NAS-Bench-201 CIFAR-10 NAS-Bench-201 CIFAR-100 NAS-Bench-201 ImageNet16-120

>60% >70% <60%
>70%
>70% >80% 5 >60%

>80% >90% o >70%
>100% >90%
>90% 6 >80%

>100%
>100% >90%

>110% |
>110% >120% | >100%

>130% |

"
<

Query time (seconds)

-
©
<
o
v}
[}
@
U 10
£
=
>
-
[}
3
o

Query time (seconds)
Query time (seconds)

=
)

5 108 2 10 10°
Init. time (seconds) Init. time (seconds) Init. time (seconds) Init. time (seconds)

https://arxiv.org/abs/2104.01177

Roadmap

e Motivation and Introduction

e Performance Prediction
o BANANAS
o Learning curve extrapolation
o Zero-cost proxies

e NAS Benchmarks
Recommender Systems

Tables of results

Different epochs
Different hardware
Few trials

Architecture

NASNet-A (Zoph et al., 20
AmoebaNet-A (Real e
AmoebaNet-B (Real €¥

PNAS (Liu et al., 2018)

ENAS (Pham et al., 2018)
NAONet (Luo et al., 2018)
SNAS (moderate) (Xie et al., 2
GDAS (Dong & Yang, 2019)
BayesNAS (Zhou et al., 2019)
ProxylessNAS (Cai et al., 2019)f
NASP (Yao et al., 2020)
P-DARTS (Chen et al., 2019)
PC-DARTS (Xu et al., 2020)
R-DARTS (L.2) Zela et al. (202(Q
DARTS (Liu et al., 2019)
SDARTS-RS (Chen & Hsig
SGAS (Cri 1. avg) (Lie)
DARTS+PT (avg)*

DARTS+PT (best)
SDARTS-RS+PT (avg)*
SDARTS-RS+PT (best)
SGAS+PT (Crit.1 avg)*

Test Error
(%)
3.46
2.65

3.34 £ 0.06

2.55 + 0.05

3.41 £ 0.09
2.89
3.53

0

.00£0.14
2.67+0.03
2.66 +0.24
2.61 £0.08

2.48
2.54+£0.10
2.44
2.56 £0.10
2.46

Params
™)
25.6

33
3.2
2.8

(GPU days)

2000
3150

Search
Method

Search Cost

DenseNet-BC (Huang et al., 2017)

manual
RL
evolution
evolution
SMBO
RL
NAO
gradient
gradient
gradient
gradient
gradient
gradient
gradient
gradient
gradient
gradient
gradient
gradient
gradient
gradient
gradient
gradient

gradient

NAS-Bench-101

e Size 423k _ o :
Load the data from file (this will take some time)
P Used tO simulate nasbench = api.NASBench('/path/to/nasbench.tfrecord')

NAS experiments # Create an Inception-like module (5x5 convolution replaced with two 3x3
convolutions).

model_spec = api.ModelSpec(
Adjacency matrix of the module
matrix=[[0, 1, 1,
[0, 0, o,
[0, 0, 0,

’ input layer
- 1x1 conv
. 3x3 conv
[0, 0, @, 0, 5x5 conv (replaced by two 3x3's)
[0, 0, 0, O, 1l 3x3 max-pool
[0, 0, o, ell, output layer
Operations at the vertices of the module, matches order of matrix
ops=[INPUT, CONV1X1, CONV3X3, CONV3X3, CONV3X3, MAXPOOL3X3, OUTPUT])

1 #
0 #
0 #
[0, 0, @, 0, # 5x5 conv (replaced by two 3x3's)
0 #
0 #
#

Query this model from dataset, returns a dictionary containing the metrics
associated with this model.
data = nasbench.query(model_spec)

conv stem

https://arxiv.org/abs/1902.09635

NAS Benchmarks

Queryable
Benchmark Tab. Surr. LCs Macro One-Shot Task #Tasks
NAS-Bench-101 v X Image class. 1

NATS-Bench-TSS
(NAS-Bench-201) v

NATS-Bench-SSS
NAS-Bench-NLP
NAS-Bench-1Shot1

Surr-NAS-Bench-DARTS
(NAS-Bench-301)

Surr-NAS-Bench-FBNet
NAS-Bench-ASR
TransNAS-Bench-101-Micro
TransNAS-Bench-101-Macro
NAS-Bench-111
NAS-Bench-311
NAS-Bench-NLP11
NAS-Bench-MR
NAS-Bench-360
NAS-Bench-Macro
HW-NAS-Bench-201
HW-NAS-Bench-FBNet

Image class.
Image class.

NLP

N % [SN[SN

Image class.

Image class.
Image class.
ASR
Var. CV
Var. CV
Image class.
Image class.
NLP
Var. CV
Var.

Ol == |rR[NN|=|=]|~

w
o

Image class.

Image class.

IR R RN R R AN R EIENANEIAS

Image class.

NAS-Bench-Suite (25 tasks)

NAS Algorithms Performance Predictors
RS RE BANANAS LS NPENAS GP BOHAM. RF XGB NAO

Avg.Rank, 101&201 4.50 3.00 3.50 1.50 2.50 4.67 2.83 217 417 117
Avg. Rank, non-101&201 3.06 2.11 2.83 3.13 3.87 4.08 3.06 133 246 4.08

+»*» Conclusions drawn from just the popular NAS-Bench-101 and NAS-Bench-201 can
be misleading!

Scaled Spearman Rank Correlation of Performance Predictors
X X X X eX X X ®

X X o,
o g%

X
® @X X @
@x X .: S

»

BOHAMIANN
BOHAMIANN+HPO
GP

GP+HPO

RF

RF+HPO

XGBoost
XGBoost+HPO
NAO

NAO+HPO

o0 o
x

X
X

R
(=
©
o
{ =y
©
&
| -
o
Q ® e}
wn
ke
Q
©
O
0

NB-101 |q
CIFAR10
NB-201 |g
CIFAR10
NB-201 |g o
CIFAR100
NB-201 |g o
ImageNet
CIFAR107 X
NB-NLP |
TreeBank
NB-MR |
HMDB51
NB-MR |q
ImageNet
NB-MR |q
City
TNB-Micro |g o
Scene
TNB-Micro |g
Semantic
TNB-Macro |g
Scene | X
TNB-Macro |g
Semantic

https://arxiv.org/abs/2201.13396
https://github.com/automl/NASLib/

NAS-Bench-Suite-Zero (28 tasks)

Examples: Examples:
Jacob. Cow. NAS-Bench-101

EPE-NAS
Zen-Score

s 52

pooooon
Qoooooo
poooooo

1.5M total evaluations

Arch. Biases

Br fose

NAS Integration

=

https://openreview.net/forum?id=yWhuIjIjH8k
https://github.com/automl/NASLib/tree/zerocost

NAS-Bench-x11

>-Model

https://arxiv.org/abs/2111.03602

Roadmap

e Motivation and Introduction

e Performance Prediction
o BANANAS
o Learning curve extrapolation
o Zero-cost proxies

e NAS Benchmarks
e Recommender Systems

ecommender Systems

neural architecture search X Q 9

Advanced Machine Learning Day 3: Neural Architecture Search
27K views + 3 years ago

° Microsoft Research @
How do you search over architectures? View presentation slides and more at

cc

l& Dense Net | What Is a Markov Chain | Probabilistic Transitions | Hidden Markov Model | Sparse...

How Powerful are Performance Predictors in Neural Architecture Search? (15 |
video)

296 views * 1 year ago

o Abacus Al

15 min video for the NeurlPS 2021 paper How Powerful are Performance Predictors in Neural Architecture Search? Cof

ﬂ Different Types of Performance Predictors | Overview of the Main Families of Performance.

How Powerful are Performance Predictors in Neural Architecture Search? (2 mi

video)
564 views * 1 year ago

° Abacus Al

2 min video for the NeurlPS 2021 paper How Powerful are Performance Predictors in Neural Architecture Search? Colin White

Frequently bought together

AutoML Fall School 21: Introduction to Neural Architecture Search
238 views + 3 months ago i - Total price: $30.02

Neural Architecture Search: An Overview G AutoML Freiburg Hannover Aodnurs Add all three to Cart
Frank Huter by Prof. Frank Hutter (ALU) https://sites.google.com/view/automischool21/ + w Add all three to List

=

BOSCH

A Worrying Analysis of Recommender

(o)
—
S
N
on
=
\O
—
—
=
=
|72}
O
—_

Are We Really Making Much Progress? A Worrying Analysis o
Recent Neural Recommendation Approaches

Maurizio Ferrari Dacrema
Politecnico di Milano, Italy
maurizio.ferrari@polimi.it

ABSTRACT

Deep learning techniques have become the method of choice for
researchers working on algorithmic aspects of recommender sys-
tems. With the strongly increased interest in machine learning in
general, it has, as a result, become difficult to keep track of what
represents the state-of-the-art at the moment, e.g., for top-n rec-
ommendation tasks. At the same time, several recent publications
point out problems in today’s research practice in applied machine
learning, e.g., in terms of the reproducibility of the results or the
choice of the baselines when proposing new models.

In this work, we report the results of a systematic analysis of al-
gorithmic proposals for top-n recommendation tasks. Specifically,
we considered 18 algorithms that were presented at top-level re-
search conferences in the last years. Only 7 of them could be re-
produced with reasonable effort. For these methods, it however
turned out that 6 of them can often be outperformed with compa-
rably simple heuristic methods, e.g., based on nearest-neighbor or
graph-based techniques. The remaining one clearly outperformed
the baselines but did not consistently outperform a well-tuned non-

Paolo Cremonesi
Politecnico di Milano, Italy
paolo.cremonesi@polimi.it

Dietmar Jannach
University of Klagenfurt, Austria
dietmar.jannach@aau.at

1 INTRODUCTION

‘Within only a few years, deep learning techniques have started to
dominate the landscape of algorithmic research in recommender
systems. Novel methods were proposed for a variety of settings
and algorithmic tasks, including top-n recommendation based on
long-term preference profiles or for session-based recommenda-
tion scenarios [36]. Given the increased interest in machine learn-
ing in general, the corresponding number of recent research publi-
cations, and the success of deep learning techniques in other fields
like vision or language processing, one could expect that substan-
tial progress resulted from these works also in the field of recom-
mender systems. However, indications exist in other application
areas of machine learning that the achieved progress—measured
in terms of accuracy improvements over existing models—is not
always as strong as expected.

Lin [25], for example, discusses two recent neural approaches
in the field of information retrieval that were published at top-
level conferences. His analysis reveals that the new methods do
not significantly outperform existing baseline methods when these

Family

Non-personalized

Nearest-Neighbor

Graph-based

Content-Based and
Hybrid

Non-Neural Machine
Learning

Method
TopPopular

UserKNN
ItemKNN

P

RP3B
ItemKNN-CBF
ItemKNN-CFCBF
UserKNN-CBF
UserKNN-CFCBF
iALS

pureSVD

SLIM

EASER

Systems

Description
Recommends the most popular items to everyone [18]

User-based k-nearest neighbors [58]
Item-based k-nearest neighbors [61]

A graph-based method based on random walks [16]
An extension of P%x [54]

ItemKNN with content-based similarity [43]

A simple item-based hybrid CBF/CF approach [50]
UserKNN with content-based similarity

A simple user-based hybrid CBF/CF approach

Matrix factorization for implicit feedback data [33]
A basic matrix factorization method [18]
A scalable linear model [36, 52]

A recent linear model, similar to auto-encoders [63]

Meta-Learning for Recommender Systems

e 24 Algorithms, up to 100 hyperparameters, 85 datasets, 315 metrics

Max. 14 18 14 17 18 19 16 17 20 20 20 19 20 20
Mean 2.3 4.2 4.7 1 7.6 9.4 104 10.7 11.2 11.7 12.3 13.3 149 16.2 16.7

https://arxiv.org/abs/2206.11886

Meta-Learning for Recommender Systems

=>& . Item-KNN ~4& ' U-neural ’ MF-BPR - SLIM-BPR =P GlobalEffects =§p= Random
=4 User-KNN =¥ Mult-VAE - @ IALS - SLIM-ElasticNet -~ TopPop

PREC@50
o =
wn o

P o
oo

o
~
©
E
T
= 0.5
w
E
>
o
O

NDCG@5
o [
wn o

o
=)

https://arxiv.org/abs/2206.11886

“—RECZILLA

Dataset meta-features -¥- XGB
—&- KNN
;- Linear

e User distribution
e Item distribution

e Interaction distribution
o

Landmarkers ﬂ'é l
8 10 12 14 16

Num. training dataset families

https://arxiv.org/abs/2206.11886

RECZILLA

User input

Performance metric: ¢ 3
A function of the metrics
in the meta-dataset M

RecZilla Training Pipeline (Offline)

Algorithm Selection

Select n parameterized rec-sys
algorithms with high coverage for
metric \A{on datasets in ¢

Dataset Meta-feature Meta-Model training

Selection

Select m dataset meta-features
which are correlated with metric
for the selected algs. [0}

Learn function f : R™ — R™
that maps meta-features to
metric (b for all selected algs.

‘ RecZilla for

Prediction (Online)

New rec-sys dataset: D

Calculate Meta-features
Calculate m meta-features for
dataset D

Performance Prediction
Estimate performance of each
parameterized alg. on dataset D

Output

Algorithm a

Hyperparameters @
Predicted metric ¢

https://arxiv.org/abs/2206.11886

Thanks! Questions?

colin@abacus.ai Slides (with hyperlinks): hitps://crwhite.ml/

https://crwhite.ml/

